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An algorithm has been developed for the direct calculation of molecular structure in the 
semimetric, distance table representation. The algorithm is based on the Caley-Merger deter- 
minant, and an imbeddability theorem taken from distance geometry. An an example, the ex- 
cluded volume of the tripeptide alanyl-alanylLalanine has been computed. 

Molecular structures are generally computed by generating atomic coordinates 
from bond lengths, bond angles, and dihedral angles. In turn, the distances d,, 
between distinct atoms pi and pj may be computed given the atomic coordinates. 
Hence, the distance table D, and the coordinate table from which it has been derived 
represent the same molecular structures: 

0 d,, d,, ... 4, 
d 0 d,, ‘.’ d,, 

D =d:: d,, 0 ... d,, 

d,, A,, d,” ‘.’ b 

(1) 

But the two representations do differ in important aspects. For a molecule of n atoms 
the coordinate table contains 3n entries, and the distance table (n’ - n)/2 distinct en- 
tries. (The factor of 2 arises from the symmetry of D.) On the basis of economy D 
appears to suffer because of the O(n*) more variables. However, molecular represen- 
tation in terms of D does offer potentially important advantages. 

The computation of a molecular structure requires that no two atoms overlap. In a 
hard sphere mode1 this requirement is expressed by the relationship that the in- 
teratomic distance dij > ri + rj, the sum of the noncovalent radii. Molecules may have 
rings involving four or more atoms. Such rings appear in D as dii cycles with 
d, = rj + rJ!, the two covalent radii, r-i < ri, rj < rj. To compute the structures of 
large molecules which are self-avoiding and which may also contain cyclic substruc- 
tures is a major problem. The fact that the distance table explicitly contains the d, in 
which overlap and ring constraints are expressed suggests that direct computation of 
D without the intervening construction of a coordinate table may simplify the com- 
putation of large molecular structures. 
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Crippen [ 11, who proposed that the direct calculation of D, utilizing an imbedding 
theorem due to Menger [2], would avoid the problems otherwise encountered in the 
removal of atomic overlaps and the construction of closed rings, has described 
numerical methods applicable to large molecules [3,4]. Mackay [5 J has solved the 
problem analytically for structures of only five and six points on the basis of a 
restricted version of the Menger theorem and has discussed other potential uses of the 
D array. Crippen’s method cannot, however, be applied in Monte Carlo calculations, 
since the numerical procedure forces the solution to an arbitrary structure and ran- 
domness is not ensured. The analytic solution of Mackay while of potential usefulness 
in Monte Carlo calculations must be expanded to large numbers of atoms. In this 
report we present an algorithm for the direct and analytic computation of D for a 
molecule of any size using the protocol of atom-by-atom construction. In addition, we 
consider the further problem of molecules with chiral centers. As an example, we pre- 
sent the results of an alanyl-alanyl-alanine (33 atoms) calculation. 

THEORY 

We consider first those definitions needed for stating the theorem upon which the 
algorithm is based. 

A space is a set of elements P = { p, ,pz ,..., pi,... } which we shall call points, and 
which have an associated topology. 

The topology we require entails distance and is constructed as follows. All ordered 
point-pairs (pi,pjFthe Cartesian product-are assigned a distance d,. While any 
arbitrary assignment is possible, we are interested specifically in a semimetric space. 

The set of points P, and the associate distances dij is called a semimetric space 
provided 

(i) d,>O, ifj; 
(ii) d, = 0, i=j; (2) 

(iii) di,i = d... /I 

The first two conditions are self-explanatory; the third requires that the distance 
from point pi to pi be the same as that from pj to pi. The distance table D (1) is an 
example of a semimetric space. The symmetry of D is a consequence of con- 
dition (iii), the zeros along the diagonal of condition (ii). 

A semimetric space is also a metric space provided the triangle inequality holds for 
an-v three distinct points. 

The triangle inequality is a well-known geometric relationship between the three 
distances associated with the arbitrary points pi,pi,pk 

dij + djk > dik * (3) 

The particular metric space of interest to us is, of course, euclidean space. 
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The n-dimensional euclidean space E, is the set of points described by the ordered, 
real coordinates x,, x2 ,..., x,. The distance associated with the arbitrary point-pair 
(P,, P,) is defined by 

n 
d:.y = C (Xi -Yi)*- 

i=l 

It is easily shown that dx,x.y satisfies conditions (2) and (3); hence, E, is a metric 
space, as are all subspaces of E,. 

It is the case that numerous spaces may be envisioned. This leads to a reasonable 
concern over their classification. Based on the definitions given above, a limited 
classification scheme is possible. While all metric spaces are also semimetric, the 
converse assertion is not true, since semimetric spaces in which (3) does not apply 
are well known. Hence, all metric spaces form a proper subset of all semimetric 
spaces. Similarly, the set of all euclidean spaces is a proper subset of all metric 
spaces. An ordering on the basis of proper subsets establishes one type of 
classification. At this point we introduce a definition which is based on the idea of 
such an ordering and is required later in the discussion, but which also constitutes a 
brief digression. 

A set of n + 1 points from a e&dean space is called independent provided it is not 
also a subspace of E,-, ; otherwise, it is called dependent. 

For example, four coplanar points are a subspace of E,, and, therefore, are 
dependent. The vertices of a tetrahedron are independent. 

A problem in any classification scheme is how to determine whether an arbitrary 
example is contained within any one of the delineated subsets. For example, given an 
arbitrary distance table D how does one determine whether the semimetric space it 
describes is also a space in E,. Classification from the more general to the more 
specific is a problem of imbedding. 

If an arbitrary space is an element of a set, and also of a proper subset, then the 
space is imbeddable in that subset. 

Thus, a plane described in E, is imbeddable in E,, but not in E, ; the semimetric 
space described by an arbitrary n by n distance table is imbeddable in E, provided 
the proper (n/2)(n - 7) + 6 constraints are met. Imbedding of an independent set 01 

points warrants an additional definition. 

A semimetric space with n + 1 points is irreducibly imbeddable in E, provided it iJ 
independent in E,. 

There must be one or more criteria to decide whether a space is imbeddable within 
a subset. The criterion to be used here is that of a similarity defined in terms 01 
congruence. 

Assume the ordered point-pair (pi,pi) in the space P, and the ordered point-pair 
(qi, qj) in Q. The two point pairs are congruent $ d: = d$ . 
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Congruence implies the conservation of distance and is usefully applied to spaces. 

Two spaces P and Q are congruent provided there exists a function f which maps 
P + Q, such that each point-pair of P is mapped onto a congruent point-pair in Q. 

By definition, symmetry operations on a geometric figure conserve distance. Thus, 
the two mirror images of any three-dimensional figure are congruent; similarly, the 
translation of a set of points in E, generates a congruent space. Congruence suggests 
a similarity between spaces, and for this reason serves as a reasonable classification 
criterion. Hence, we shall use the term congruently imbeddable. Note that two 
congruent spaces need not be identical; for example, mirror images. 

As mentioned in the introduction, a semimetric distance table D is easily generated 
from a coordinate table, but for an arbitrary D to be imbeddable in E,, 
n(n - 7)/2 + 6 constraints must be met. The explicit formulation of these constraints 
is given in a theorem of Menger [2] which is based upon the Caley-Menger deter- 
minant. This determinant is defined next, followed by a statement of the theorem. 

The CaleyTMenger determinant associated with the points p, , pz ,..., p, is given by 

CWP, 9 PZ v..., P,> = 

01111 

1 0 df2 dT3 di4 

1 di2 0 d;, dG4 
1 d;, d;3 0 di4 

1 d;, d;,, d& 0 

:: i . . 

1 d:, d:, d:, 

1 

d:, 

d:, 
d:, 

0 

(5) 

This determinant for n points will also be abbreviated as CM(n). 

THEOREM. An arbitrary semimetric space S is congruently and irreducibly imbed- 
dable in E, if and only if (i) S contains at least one set of points p,,p2,...,pr with 
r < n + 1 such that the signs of CM(p,,...,pJ are given by 

sgnCM(~,,~,,...,p,)=(- Ilk, (6) 

for all k = 2,..., r; (ii) for every pair of points pi and pi distinct from p, ,..., p,, and 
from each other 

CWP I,...,pr,pi)=CM(p,,...,P,,Pj), 

= CM(p, ,..., PrfPi,Pj)=O* (7) 

The first condition (6) implies that the semimetric space must contain at least one 
set of ordered points such that CWP, ,PJ > 0, CWP,,P~~P,) < 0, 
CM(p, ,pz ,p3 ,p4) > 0, etc. The second condition requires that all CM(r + 1) and 
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CM(r + 2) constructed with the initial p, ,.,.,pr vanish. Rules for an algorithm which 
constructs imbeddable semimetric spaces can be derived from this theorem. 

Assume a set of m - 1 points imbeddable in E,. To this set add one point such 
that all the distances between this last point and the original set but one are known. 
The two points with the mutual, unknown distance shall be called the test set, and the 
remaining m - 2 points the reference set. Since there is only one unknown distance, 
and since the points may be numbered in any convenient order (renumbering is a 
symmetry operation), the Caley-Menger determinant may be written as (for the case 
m=5): 

011111 

1 0 & d;, d;, d;, 

1 d;, 0 d;, di4 d;, 
CM@) = 1 d2 

13 
d2 

23 
0 d2 

34 
d2 

35 
(8) 

1 d:, di4 di4 0 x 

1 d;, d;, d& x 0 

Equation (8) is the example for 5 points with x representing the unknown d:,. For 
the point set to be irreducibly imbeddable in E,, CM(5) = 0. It can then be shown by 
expansion that 

CM(5)=Ax2+Bx+C=0, (9) 

where the coefficients A, B, and C can be evaluated. This quadratic equation has the 
following properties: 

(I) If the reference set is dependent, x is indeterminate. 
(II) If the reference set is independent, and either of the sets of m - 1 points 

not involving x dependent, then (9) has two real, positive roots which are identical. 
(III) Otherwise (9) has two real, positive roots which are not identical. 

The derivation of these properties as given here is based upon expansion of (8). 
Only the case of CM(5) will be treated explicitly; the proof for the arbitrary CM(n) 
should then be obvious. The expansion of (8) yields the values of A, B, and C [5 I. 

101 1 l/ 

A=- 
j 1 0 d:, df, 

/ 1 d:2 0 43 
= -CM(3), 

1 d:3 d:3 0 t 

101 11 1 

1 0 d:, d;, di4 

B=-2, 1 dt2 0 d;, di4 

1 d:, d;, 0 d;4 

1 d:, 4, d:, 0 

(10) 

(11) 
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C= (12) 

The coefficient A is the negative of CM(3). The coefficient B is obtained from (8) by 
deletion of the last column, and the next to last row (or vice versa), replacement of 
the one remaining x by zero, and multiplication of the resultant, unsymmetric deter- 
minant by -2. Finally, C is obtained by replacing both x’s in (8) with zeros. 

The determinant in (11) can be expanded along the lowest row to give 

(13) 

where the coefficients bi are obtained by Cramer’s rule for the solution of the set of 
equations: 

0 + (x2 + 6x3 + a‘$= 1, 

a, + 0 + d&q + d;,a, = d:d, 

a, + df,a, + 0 + d:,a, = d$, 

a, + df,a, + dz,a, + 0 = di4. 

(14) 

The coefficient determinant of (14) is CM(3) and, thus, equals -A. Therefore, 

-aiA = bi, i = l,..., 4; 

B = - 2A(a, + df,a, + di,a, + d:,a,). 
(15) 

If the three reference points are collinear, they are imbeddable in E, , and thus depen- 
dent. As a result, A = 0 on the basis of the theorem, B = 0 by Eq. (15), and x is in- 
determinate, establishing property I. 

If the three reference atoms are not collinear, they are not imbeddable in E, and 
A # 0. Because (9) is the equation of a parabola, the x coordinate at the vertex is 

x,. = - B/2A, B = -2Ax,. ; 

x,.=a, +d:,az+d:,a,+d:,a,. 
(16) 

The determinant (12) can be treated similarly. 

C = c, + d:, c2 + d;, c, + d-f5 c, , (17) 

where the coefficients ci are obtained by Cramer’s rule for the solution of the linear 
equations: 
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0 + a;+ a;+ a;+ 5 a’ = 1 1 
a; + 0 + d:,a; + d:,ai + d:,a; = dt4, 

a’, t d:,a; + 0 + d:,a; + d&a; = d:,, 

a’,+d:,aG+d&al,+ 0 +d:,a\=d:,, 

ai + d:,a; + &*,,a; + di,a; + 0 = 0. 

(18) 

The coefficient determinant in this case is the transpose of the determinant in (11); 
hence, 

-a; (B/2) = c; ) i = l,..., 5; 

C = - (B/2)(a’, + df5 a; + d:, ai + di5 a;); 

C=A(a, + d:,a, + d:,a, + d:5a4)(a; + d,a; + d:,aI, + d:,a&). 

(19) 

Comparing Eq. (14) and (18), it is evident that if a; = 0, then a, = a:; otherwise, 
ai # ai. From Eq. (14), and by Cramer’s rule, 

01111 

1 0 dt2 d;, d:, 

a; =-(2/B) 1 di2 0 dz3 di4 

1 d:, d& 0 d:, 

1 d;, d& d:, 0 

(20) 

The determinant in (20) is CM(4). If the four points pr , pz ,p, ,p,, are dependent, they 
are coplanar, or imbeddable in E,. Hence, CM(4) vanishes by the imbeddability 
theorem, ai = 0 and a, = a:. Therefore, from (16) and (19), 

GAX:,. (21) 

But (16) and (21) imply that the discriminant of the quadratic (9) vanishes, and 
hence, the two roots are identical and equal to x,.. This establishes property II. If 
p, ,p2 ,p, ,p4, are independent, CM(4) # 0, the discriminant of (9) is not zero, and 
the two roots of (9) are distinct (property III). Using the three properties of (9) 
together with (6) and (7) assures the construction of a semimetric space imbeddable 
in E,. The corresponding geometric proof is indicated in Fig. 1. 

Structural information is usually supplied in the form of bond lengths, bond angles, 
and dihedral angles. Hence, the two angles (defined in Fig. 1) must be converted to 
distances before beginning computations, The distance between the two atoms about 
the bond angles is calculated by the law of cosines. The distance between atoms 
related by a dihedral angle may be calculated as follows. The maximum distance d,,, 
between the two atoms is achieved in the trans-planar configuration; the minimum 
distance dmin in the &planar configuration. Since four coplanar points are 
irreducibly imbeddable in El, CM(4) vanishes, and the quadratic (9) has two distinct 
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FIG. 1. Illustration of properties I, II, and III of Eq. (9) for the case of five points in E,. (a) If the 
reference set (points 1, 2, and 3) is collinear, points 4 and 5 can be anywhere on the two respective 
circles perpendicular to the line as indicated. Thus, the distance between points 4 and 5 cannot be deter- 
mined. (b) If the reference set is coplanar, points 4 and 5 can each be placed on either side of the 
reference plane. Therefore. there are two distinct solutions. (c) If four of the five points are coplanar, 
then even though the last point can be placed on either side of (or on) the plane, there is only one value 
of d,, 

roots, one of which is d,&, the other d&, . Then from simple trigonometric con- 
siderations (Fig. 2) it can be shown that 

d2 = d&, + (df,,,, - df,,,) sin*(8/2). (22) 

One last problem must be faced. A molecule with n chiral centers can be 
constructed 2” ways excluding bond rotations and molecular translations. These 
constructs can, however, be grouped as pairs congruent to one another by some 
symmetry operation. The 2”-’ noncongruent isomers require 2”- ’ distance tables. 
For example, a molecule with one chiral center has one of two possible structures 
related by the symmetry operation of inversion. Since distance is preserved in a 
symmetry operation, one distance table represent both isomers. In the case of two 
chiral centers, two distance tables are required to exhaust all congruent structures; in 
one set the pairs are congruent by inversion, in the other by rotation. For all 
molecules with n > 1 chiral centers n - 1 additional constraints are required to ensure 
computation of the correct D. Expressed differently, atoms must be placed around 
n - 1 chiral centers, relative to the placement about one reference center. 

In a chain of amino acids the peptide bond is assigned as truns-planar. Therefore, 
the backbone conformation is entirely specified by the dihedral angles around the 
N-C” and C,--C’ bonds (Fig. 2; see [6] for conventions and nomenclature). The 
chain can, therefore, be visualized as a series of planes linked by C” atoms acting as 
swivel points. Identical relative geometry about each C” is thus established by always 
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D 

FIG. 2. Illustrations of geometric relationships discussed in the text: (A) bond angle; (B) dihedral 
angle: (C) minimum and maximum dihedral distances; (D) geometric visualization for the derivation of 
Eq. (22). rr, rL, radii of circles projected by dihedral rotations; h, distance between projected circles. The 
derivation is based upon the following relationships: 

dtmn = (rl - rJ2 t h2 I > 
dk,, = (r? + r,)z t h2 2 La, - dmi, = 4rlrl, 

rf2 = ri + ri - 2r, rz cos .9 

d’ = ,.I’ + h’ =+ dZ = dki, + 2r,r,( I - cos 0). 

placing N and X on the same side of the plane having first “normalized” the rotations 
about the Cy-C and N-C:+, bonds. Since angles are not stored in a distance table, 
an algorithm which uses distance in this normalization procedure has been developed. 
This algorithm will be described in the next section. 

METHODS AND RESULTS 

The algorithm generates polypeptide structures randomly in order to obtain a uni- 
form sampling over all conformational space. Conformation variations are obtained 
by dihedral rotations, with bond distances and bond angles held fixed. The protocol is 
to add one atom at a time to a growing structure by calculating its distance to all 
previous atoms with Eqs. (7) and (22), and properties I through III. Atomic overlaps 
are then determined for an excluded volume calculation. 
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FIG. 3. Relationship of peptide planes. 

The distance between covalently bonded atoms, between two atoms bonded to a 
third, common atom, and between all atoms in the plane of the peptide unit (Fig. 3) 
are constant over all molecular conformations. These distances, which in the example 
of Ala, constitute approximately 100 of the required 528 entries, are entered into D 
before starting the calculations. All initial structural parameters are identical to those 
used elsewhere [ 7 J. 

The distance between the two outside atoms of a quartet defining a dihedral angle 
(to be called the dihedral distance) falls in the range d,i, < d < d,,, (Fig. 2). The 
distances dii, and d&, are obtained as the two roots of the quadratic equation 
CM(4) = 0. Generation of a random distance within this range is equivalent to the 
generation of a dihedral angle in the range -7~ < 0 < 7~. Uniform sampling over 
conformational space requires a uniform distribution over 0 rather than over the 

range d,,, -d,,,. Since the dihedral distance is not directly proportional to 0, a 
random sample of d was obtained with (22) and a random, uniformly distributed 
sample of dihedral angles. The sign of 0, which is lost in Eq. (22), specifies the 
rotation direction and is used explicitly as discussed below. Had we not been 
interested in a uniform sampling we could have dispensed with Eq. (22). 

Atom-by-atom construction involves the repeated use of a few elementary 
procedures; these will be described in terms of the specific example Ala,. (Note that 
the calculations are general for any polypeptide chain, and that Ala, is used as an 
example only so that the discussion is more concrete.) The carbonyl oxygen, atom 8 
(Fig. 4), is placed after all the interatomic distances for atoms 1 through 7 have been 
determined. The dihedral distance d,, is assigned randomly. A CM(5) can then be 
constructed with one unknown distance, d,, using atoms 3, 5,6 as the reference set. 

‘3$4H ‘5H 

\I/ 
2H ‘2CP 6 H HH 

A \I/ HHH 

FIG. 4. Numbering scheme used in the calculation of Ala,. 
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Since the reference set is not collinear, and since atoms 3, 5, 6, 7 are not coplanar, the 
quadratic equation CM(S) = 0 has two distinct roots. One corresponds to the O-H” 
distance after a clockwise rotation about the C”-C’ bond, the other after a counter- 
clockwise rotation. If the value of 6’ used to generate d,, is positive, the larger root is 
chosen; otherwise, the smaller. Atoms 3,5,6, 7 can then serve as the reference set for 
the three CM(6) determinants used in calculating d,, , dZ8, and d,, . The reference set 
is not coplanar so that three quadratic equations each with one distinct root are 
obtained. Atom 8 is placed. 

Placement of atoms 9, 10, and 11-N, H, and C* in the peptide plane--is an 
easier task. For example, d,, can be calculated with atoms 5, 6, 8 as a reference set. 
Since atom 9 is coplanar with the reference set, the equation CM(5) = 0 has one 
distinct root. The same reference set is used similarly to calculate all unknown 
distances to 9, 10, and 11. 

Symmetry simplifies the calculations. Placement of atom 6 is one example. The 
dihedral distance d,, is assigned randomly. A CM(5) is constructed with the 
noncollinear, reference set 1,3,5 and the test pair 2,6. Since neither 1, 3, 5,6 nor 
2, 3,5,6 is coplanar, the equation CM(5) = 0 has two distinct roots corresponding to 
clockwise and counterclockwise rotations. But the three ammonium hydrogens are 
equivalent so that rotation is a symmetry operation; therefore, one root can be 
assigned do dZ6, the other to dd6, and atom 6 is placed. 

Imposing the proper relative geometry about asymmetric centers is the most 
difficult task, conceptually. Since all amino acids in proteins have the same absolute 
geometry, the relative geometries about each C” were assigned identically. Begin with 
the definition of two test constants: t,,, is the value of d,, when atoms 7 and 8 are 
placed in the truns-planar configuration; tmin is the value of d,, for the &planar 
case. Both constants are easily calculated using one CM(5). When in the calculation 
of d,, 6 > 0, d, = t,,, ; otherwise d, = tmin. The placement of atom 16 begins with a 
random assignment of the dihedral distance d,,,,. The CM(5) with atoms 6,9, 11 as 
reference set and atoms 7, 16 as test pair yields an equation with two distinct roots. If 
in the calculation of d,,,, 8< 0 and d,, < d,, or if 6J > 0 and d,, > d,, then the 
smaller root is chosen. Otherwise, d,,,, is assigned the larger root. The final step in 
the chirality determination involves placement of atom 17. The CM(5) with reference 
set 9, 11, 16 and test set 6, 17 yields a quadratic equation with two distinct roots; the 
smaller is assigned to d,, ,, if the value of 0 used in the d,.,, dihedral distance 
calculation is positive. 

In this algorithm the peptide plane (Fig. 3) serves as reference. Atoms 7 and 16 are 
placed either on the same side of the plane (smaller root) or on opposite sides (larger 
root). Whether placement is to be on the same or opposite sides depends upon the 
directions (angle signs) of rotation around CT-C’ and N-C:+, and the rotation 
magnitude (comparison with d,) around Cp-C’. A complete discussion of the 
reasoning behind this algorithm is difficult without a physical model. The reader is 
encouraged to utilize a Labquip or similar molecular model and to rotate for himself. 

The four procedures just outlined suffice for the complete construction of any 
polypeptide, although the descriptions dealt with particular parts of the Ala, 
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FIG. 5. A structure of Ala, first computed as a distance table. 

molecule. One successful Ala, structure is shown in Fig. 5. The coordinates for the 
generation of this line drawing were calculated from D by Eq. (6) in Ref. [I]. We en- 
countered no numerical instability in the coordinate calculations due to roundoff 
errors, and thus, an iterative procedure was unnecessary. 

The structure-building algorithm described in this report has been used in a Monte 
Carlo calculation of excluded volume for the case of Ala,. Each randomly generated 
Ala, molecule was considered in terms of three fragments: 

CH, 0 CH, 0 CH, 0 

I / 
H&C-C ; 

I // I // 
-N-C-C ; -N-C-C 

I \ I I \ 
H HH O- 

The fraction of conformational space accessible to a particular fragment is estimated 
by the fraction (fobs) of all generated structures in which there is no atomic overlap 
in that fragment. The fraction accessible to the total molecule is estimated by the 
fraction of structures with no atomic overlaps whatosever. When inter- but not in- 
trafragment atomic overlap is allowed, the fraction accessible is estimated as the 
product (f,,,,) of fragment fobs%. For the example of Ala,, the probability of 
generating a structure with no intrafragment overlaps is the product of the three in- 
dividual probabilities associated with the fragments shown above. 

For our purposes, the excluded volume is defined as the difference between the 
volumes in conformational space accessible to a structure with and without allowed 
intrafragment overlaps. Since volume in conformational space is not well defined in a 
Monte Carlo calculation, while volume fraction is, the excluded volume is discussed 
practically in terms of the ratiof,,,/f,,,, , which is also a ratio of volumes. The results 
obtained with Ala, assuming a hard-sphere model are presented in Table I. Approx- 
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TABLE I 

Excluded Volume in Alanyl-alanylLalanine 

Structure 

N-terminal alanyl 
Central alanyl 

C-terminal alanine 

Sk, fu,, 

0.694 (0.0096) - 

0.657 (0.0099) - 

0.432 (0.0103) - 

Alanyl-alanyl-alanine 0.0023 (0.00 12) 0.197 (0.00672) 

J$,,/&,~= 0.0121 (0.0061); dSexludrd = -8.7 (1.0) eu. 
Fraction of structures with no interatomic overlaps; calculated on the basis of 23 15 constructions. 

h Figures in parentheses are standard deviations. For Jo,,, these were estimated by fir,,\ (I -A+,\)/N, 
where N is the total number of structures tested. Others obtained by error propagation. 

imately 99.8% of conformational space is denied Ala, when no overlaps are 
permitted, while only 80% is denied a structure in which overlaps between fragments 
are allowed. This represents an entropy loss of approximately 9 eu for assembly of 
the three fragments. The observed space restriction is increasingly severe for each 
additional residue and becomes an insurmountable hurdle for Monte Carlo 
calculations of even moderately sized polypeptide chains. 

In conclusion, we have shown that a semimetric representation, the distance table 
D, of a molecular structure can be constructed successfully using Caley-Menger 
determinants. Two important limitations are the indeterminancy associated with 
Caley-Menger determinants based on a dependent reference point set and lack of 
explicit information in D concerning inversion. Both limitations can be overcome. 
The structure-building algorithm developed here as a test of the approach involves 
atom-by-atom construction. A very cursory examination of the excluded volume 
problem indicates that the atom-by-atom method cannot be applied to large 
molecules. Since the distance table contains explicitly all the information needed to 
define the excluded volume, it should be possible to generate analytically all atomic 
positions simultaneously within the constraints imposed by the exclusion of atomic 
overlaps, thus circumventing the excluded volume barrier. Such a procedure, which 
can be formulated in terms of a set of linear equations coupled to lower boundary 
conditions, is theoretically possible. When implemented, this approach should allow 
Monte Carlo calculations that would open areas of structural theory hitherto inac- 
cessible to protein and polymer chemists. 
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